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MEAN SQUARE ERROR BEHAVIOR FOR PREDICTION
IN LINEAR REGRESSION MODELS

Alan E. Gelfand

ABSTRACT

For the problem of individual prediction in linear regression

models, that is, estimation of a linear combination of regression

coefficients, mean square error behavior of a general class of

adaptive predictors is examined. j X

1. INTRODUCTION

Suppose the usual linear regression model with fixed regres-

Y - XB + c, Ynxl' XnXp full rank, BpX I and cnxl %,(O'c21).sors, x'nppl nl (~ )

Let B L (X TX)- X TY denote the ordinary least squares estimator

of B. At a new vector of predictor values, X0, ye seek to esti-

mate XTF . Using mean square error as a criterion, results of

Cohen (1965) show that if c is normally distributed, ciX 8L is an
T

admissible estimator of XB for 0 < a < 1, e.g., the UHVU predic-
tor is admissible. In fact, a predictor of the form TY is admis-

sible for XT8 iff (2 _x(xTx)-lx )T(21-X(XTX)-lx • XT(xTx)-1x0.

In the sequel, we study the MSE under normality of predictors
T^

of the form XoB where

6C CLS + (I - C)B* (1)



C a matrix usually data dependent and B* a specified vector. Such

BC include most alternatives to BLS discussed in the literature.

Earlier work in this direction appears in Baranchik (1964) and

Radhakrishnan (1970).

2. NOTATION AND MOTIVATION

To simplify matters, we convert to canonical form. Let 0
s PLS' P orthogonal such that P(XTX)-P -D - , D diagonal ith

diagonal elements d .. Define a a PB, I - PX and for convenience

set S* 0 0. For the moment assume 02 known. Our problem now is to

estimate e -I g aiven a % N(QoD ) wishing to do well near 6 a 0.
TA ' T - T-l1 2 TLet U a T, Z . Do , q = D L, V a Z - U /q, X - aT D and

4 = x _ 2/q. Then, V, V are independent, U t;(6,o 2 q),

V nu o2 x 2 _(-C /)
p 1

Consider a general adaptive predictor 6(a) of the form

6(m) = (. (2)
1 11

Most predictors of 6 discussed in the literature are special

cases of (2). Apart from the LS predictor, U, we have:

i) A class of predictors given in Thompson (1968)
12 hi 2

T M 2  U, m a known constant, i.e., h() = . 2
m U2 +mo2q (WE) +mc q

ii) A class of predictors given in Mehta and Srivastava (1971)

MSblob 2  )U, O - b1 < 1, b2 > 0 ,  b2 known,

^T 2
i.e., hi(a) - 1 - bTI exp(-b2(a)2/a q).

iii) A predictor arising from the James-Stein estimator adapted

for unequal variances (Sclove 1968)

IS - (1 - Lo "W c known usually taken equal to p - 2.

A positive part adjustment should be applied so that h.( i)
- 11 - co2(;T ) - 1 ] *  1

iv) Predictors arising from (simple) ridge estimators
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d.
t 1 t

Rk t  d kt ai

where kt is based on the data, i.e., h.(a) = di/(d.+k t()).

k's discussed include:

k1(a) 0 o2p(; Tc)-l (Hoerl, Kennard, and Baldwin 1975),

k2 (a) - o2pZ-  (Lawless and Wang 1976),

k3(a) the solution to Ea d (d. + k)- 2 = - o2 d.

(McDonald and Galarneau 1975),

k4(6), the solution to £Z2d (d. + k4) -2p
4i i i 4

(the RIDCM estimator of Dempster, Schatzoff

and Wermuth 1977).

A subclass of (2) which includes (i), (ii), (iii), and Rk2 has the

form
6o)- ih(,Zka (3)

A lurther subclass which still includes (i), (ii), and (iii) is

6(6) = h(U,Z) • U. (4)

When D - I, all of the aforementioned estimators belong to (4).

Taking another point of view (see e.g. Thompson (1968)), if

h. in (3) is constant, the optimal h. to minimize the MSE are1 1

easily obtained:

h. (5)
i o2  + .

An estimator of h. would be of the form c. (a,ol) leading to a pre-
1 1

dictor belonging to (2). If (5) was estimated by c(U,Z,o 2) . a*i

the class (4) results.

Suppose we take a Bayesian approach using a prior which

centers e at 0, where we want to do well. More precisely, let Q be

an orthogonal matrix such that QD~a = (e/ ') where n is (p - )

and nT n 
= . If we take as our prior 

n
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q) _. ,y 0 P 0 known,
(e/4) N(0,(0 ° p -I

then under squared error loss, the Bayes estimate of 6 is

(y + 02) 1 
* YU. Since (U,Z) is sufficient under the marginal

distribution of w - QDk an "empirical Bayes" estimator of 6 takes

the form in (4).

3. EXAMINATION OF THE MSE

We can calculate the MSE for the general predictor in (2) in

terms of the h., assuming a2 
known.

1

Bh.
Theorem 1. If EI.- a • & i , i 1,2,...,p,

MSE(M) = c2q * E( - U)- 2c-Ezz-1(1 - h.)

22qEZ U (6)

Proof. By direct calculation

MSE(M) = o2q + E(6 - U)2 - 2E(r(a)(U - e)) (7)

where r(&) - E(l - h.).ia.. Stein's identity (Stein 1981, p. 1148)

converts the right-most term of (7) to a qE( - --. Simplification

yields (6).
bh.

would be calculated using the transformation _ DQ T E of
;U

the previous section. In the case of (3), it can be calculated

directly writing h. as a function of U and V. For predictors of1

the form (4), MSE() depends only on e and s and is given as

Corollary 1.

Corollary 1. For the predictors in (4), if EIU I chu

MSE(6) - 2q E(0 - h) U + 2a qEU L - 2o2qE(1 - h). (8)

Under (4) choices of h in the literature are such that h is

symmetric in U about 0 and restricted to [0,1]. Using essentially
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the argument of Efron and Morris (1976, p. 14) positive part

restriction of h uniformly reduces risk. Restriction of h < 1 is

less clear. Taking h > 0 the predictor h* • U where h* a min(hl)

does not necessarily dominate h - U. For example, let
1 , 2 < 2 < 2

h(U,V) + 1 c, a 2 <u < b Then at each 4, for 1ej suffi-
,elsewhere

ciently large, MSE of h(U,V)U is less than MSE of h*(U,V). None-

theless, to improve in a neighborhood of a specified e0 requires

convex combinations of V and 80. Theorem 2 details MSE properties

of predictors in (4) relative to the MSE of U.

Theorem 2. For 6(6) in (4) with h c [0,1], let h be symmetric

in U about 0. Let g = (1 - h)U with lin sup g - 0 and assume
lul v V

exists for all U. Finally, assume that the Lebesgue measure of

A -{(U,V) : h(U,V) < 1) is greater than 0. Then,

i) For each 4 there is a neighborhood N of 6 - 0 where

MSE(6;6,4) < o2q.

(ii) MSE(6;6,¢) is bounded and lim MSE(U;8,¢) - c2q.

(iii) ?SE(;6,) is symmetric in e about 0 and 6 e, 0

0.

(iv) g2 2 changes sign at least once in 0 < U < -. If

g 2 Uchanges sign b times in 0 < U < -, then for fixed 4,

MSE(6; ,4) - c~q changes sign at most 2b times.

Proof. The proof of (i) is clear since MSE(6;0,4) < o2q.

For (ii),

MSE(6;8,4) - o2q + Eg2 _ 2E(U - e)g. (9)

Given c, 4 u0 such that for all V, U > u0  Igj < c and a e80 > 0

such that jej > e P(IUI • O > u0 ) > 1 - c. Then the second term

and the third term (using the Cauchy-Schwarz Inequality) in (9)

can be made arbitrarily small as 161 - -. It is clear that the

r.h.s. of (9) is bounded. (iii) is obvious. The first part of

(iv) follows since U is admissible. The second part follows from
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the sign change theorem of Karlin (1957) by noting that

MSE(U.;6,¢) - o2q - E(g2 _ 2 'g).

Remark 1. Predictors in (i), (ii), (iii) of Section 2 satisfy

the conditions of Theorem 2.

Remark 2. Result (ii) is a simple case of the "tail mini-

maxity" notion of Berger (1976).

Remark 3. In (iii), inf MSE(U;e,*) need not occur at e - 0.

If, however, h(U,V) is increasing in [UI it must as may be shown

by establishing the result for h, a step function in U. An induc-

tion argument proves this.

Remark 4. If b 1 1 in (iv), then a graph of MSE(1;6,4) for

> 0 must start below c:q at e a 0, cross above c:q at some 6 and

then asymptotically return to a2q from above. Any predictor satis-

fying the conditions of Theorem 2 must necessarily perform worse

for a set of e's near 0 than for a set arbitrarily far away.

Remark 5. No imediate extension of Theorem 2 to 6(G) as in

(3) is available. For an arbitrary member of (3), MSE depends upon

e and n and, even if each h. meets the "tail minimaxity" condition,1

need not approach o2q as 1e -1 m for fixed n.

Remark 6. Theorem 2 is readily extended to the comparison of

any pair of predictors in (4).

We conclude with a coment on admissibility for the above

predictors. Within the class of predictors based solely on U, i.e.,

h(U)U, those meeting the conditions of Theorem 2 will either be

admissible or if not then improvement cannot be substantial. We

employ ideas of Chow and Hwang (1984). Suppose 6 1(U) is to dominate

60 a h(U)U meeting the conditions of Theorem 2. We can write I as

h*(U)U, and assume h* > 0. For 6 1 to dominate 6,0 requires, when

lJU is large, that generally h* be closer to 1 than h and that,
when 1U1 is small, generally h* be closer to 0 than h. A simplified

picture of 60,61 for U > 0 miRht look like

6



6

8

60 h(U0 )U0  . . .

U0  U

But, at e =0 it would be almost impossible for E to domi-

nate. Thus, the simplest h* which realistically could dominate

would have to have at least 3 sign changes for h - h* on U > 0.

For such an h*, its form would be complicated, domination would be

difficult to show, and improvement would be minimal.

This argument does not extend to the more general class (4).

Though V and V are independent, conditioning on V in the above

heuristic leads to % depending upon V. We, nonetheless, conjec-

ture "approximate admissibility" for members of (4) meeting the

conditions of Theorem 2.

FOOTNOTE

1 When a2 is unknown, we customarily assume an estimator S2 of

c such that vS2 P. c2X2 independent of &. In the foregoing pre-
2 -

dictors, a2 is replaced by cS . As Lawless (1981, pp. 463-464)

notes, when v -' - and even when v is moderate, resulting MSE will

differ little from that with c2 known.
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